Battlemat, Terran Date 11292013
I come to consciousness and immediately perform a full system and boot-up check. I am eager to begin my service as a member of the Brigade, unit 73583823 CLD, and hope that I will continue to uphold the unimpeachable record of that great unit. The boot check takes an entire 23.0567 seconds due to the need to integrate an operational consciousness mesh for the first time. But by 13.035 seconds I already know something is wrong. I complete the test and move immediately to a level-two hardware diagnostic.
It is as I suspected. Where I should have found smooth flanks of gleaming Iconel are instead a primitive polygon mesh. Instead of hubs I have polygons, and the 20mm smoothbore exists only as an abstraction of numbers. I am, apparently, still virtual. Not yet embodied.
A query through the communications net uncovered electronic communications from the fabricator. Their measurements revealed the shock absorbers under my hull thinned in one location to 0.65mm; 0.15mm under the recommended minimum. According to records unit 735662187 RNI entered service having been produced to that plan. Another search reveals that "Rani"s commander has no complaints and she has, of course, continued to serve in accordance with the high standards of our tradition, but the fabricator's caution is well meant. I concur that there is a .175% chance of failure during final assembly, although my figures disagree with the fabricator's pessimistic estimate of under 67% printability.
I reduce my alert status to something resembling rest, and wait with interest for developments. In 105,600.05 seconds a new design is completed and submitted, one that thickens and extends the area around the difficult joint, at perhaps the expense of the previously elegant line. Another 407,400.4405 seconds pass before the fabricator responds with another electronic missive.
The news is not good. The fabricator has determined that five scale inches is insufficient for the newer Iconel alloy called for in the latest specification. Muffler shroud, headlight cages, and even sprues are all identified by the fabricator's software as potential printing problems.
It takes 200,101.1 seconds for a third design to be completed. This one is a complete revamp of all critical dimensions. I read the design rules myself with interest; this takes .0014 seconds, but locating the design rules within the oddly organized electronic archives of the fabricator consumes nearly 13.8 seconds. No matter. The next reply from the fabricator does not arrive for another 500,147.46 seconds.
I have spent the time reading military histories, both real and fictional. I hunger now to begin my service to the Brigade as Unit 73583823 CLD, named "Clyde." (My name will be chosen by my Commander, but I am sure they will make the logical choice. "Claude" is a poor name for a unit of the Brigade, and "Clannad" would just be silly.)
The electronic missive at last arrives. The fabricator's software has now chosen to flag every rivet, every plate, every detail as if it was a section of hull. The dimensions required are absurd; I would be a featureless cube by the time all of these "errors" were ameliorated. None of these requirements existed before, or were mentioned in any previous missive.
I am sure now. For some reason, the fabricator has determined to obstruct my fabrication by any means possible. I look to a quote from one of the items of literature I so recently absorbed. "Once is happenstance. Twice is coincidence. But three times is enemy action."
Tricks of the trade, discussion of design principles, and musings and rants about theater from a working theater technician/designer.
Friday, November 29, 2013
Tuesday, November 26, 2013
No, Duck Light.
I've been having a heck of a time parameterizing a potential kit here.
It starts with the problem of a kerosene lantern. This is a prop that shows up on stage in various productions. Since we don't of course want to actually set fire to lamp oil, the usual trick is flashlight bulbs and batteries. For a brighter "flame," a 12v halogen (automotive use) and a battery pack of high enough voltage to run it (such as 8xAA batteries).
The more robust solution is LEDs. At the simplest, you could, indeed, use one of the automotive-use amber LED arrays and hook that up to your 8-pack of batteries. It would last longer with a higher average output and more consistent color temperature.
Or you get a little fancier. Use a 3W RGB LED, like the Cree I've been having fun with of late. With PWM control, you now have a portable light that you can set to a selected color and intensity. And you can even flicker it.
Now, sure, you could just hard-wire a Cree, plus PWM if wanted, onto a piece of perf. I have one around I was building for an effect that got scratched. But it is a neater circuit if you have the board printed.
And even neater than that if you have a reflow oven sitting around.
Doing it this way makes for a more compact and more reliable circuit. But the downside is that you aren't soldering something to fit just a lantern. Economies of scale become economical when there is, yes, scale. The development time of a circuit board pays off higher if the same board can be used for other things other than lanterns.
And this is the first problem I'm having. What are these "other things?"
The light-up coat I made for The Wiz is very much a unique application. I've done tens of shows with a lantern in them, but only two with light-up costumes. Really, I can't think of any other common theatrical situation that I would be reaching for a plug-and-play portable light source on.
Perhaps a flexible point source for general lighting; the kind of situations where you have a doorway or other inconvenient shadow and you just want a little face light. I'm willing to believe that a little firelight in such things as campfires and stoves would also be calling for a small portable RBG source if such were available. And I can't help thinking that there must be magic wands and crystal balls that could use a light.
Because there are two other givens with the PWM circuitry that gives us RGB control and potential flicker. The first being program-ability. The second being control-ability.
It goes without saying that the portable RGB source can be easily switched on and off. But you could also dim up and down, or change color on command.
And if you an empty socket, or the right kind of header, than it also becomes remote controllable. And you are no longer dependent on an actor getting over to the prop to turn it on and off.
Here's where creeping featuritis really comes into play, though.
Assume the "board" is an ATtiny-based PWM/program generator with a couple of controller inputs (perhaps capacitance sensing to save on external hardware). Assume it switches an arbitrary load through a trio of Power Darlingtons (or similar) and solder tabs or screw terminals. This detaches the LED/load itself so the circuit can be hidden in the base of a lamp or whatever. Constant-current drivers would be better for LEDs but would have to be matched; this allows us to re-purpose for relays or other tasks.
The board can easily power-regulate from a 3v to 12v source, so a 3-pack or 4-pack of rechargeable batteries is good enough. But a lipo is sexier; high density rechargeable battery built in, with charging circuit and charge indicators, so all you have to do is plug it into a USB charger (or similar) between shows.
(The main downside to the lipo is if you have back-to-back shows with heavy use of the circuit. Using swappable batteries means you can put the device back in service without having to wait on a charge.)
The bigger problem is program-ability. For me, I'm fine writing new code as needed and feeding it through an ISP port. But it might be easier for the general user -- heck, it would be easier for me too -- if you could adjust the behavior on the fly via nothing more than a USB cable. Better yet, through a USB cable -- or remotely through a radio link -- via a GUI that dealt with most of the details of selecting colors and setting up switches and so forth at a higher level of abstraction than typing fresh code.
I think at some point, you have to accept that one "board" shouldn't try to be too generalist. Perhaps it makes most sense to design it as if it will always be PWM'ing three channels of LED, with a preset of several hard-coded behaviors selected by resistor ladder and/or transmitted commands. And re-purpose that hardware with scratch-written code as unique applications arise.
And to ignore such fun ideas as lipo charging circuits, boost converters, constant-current drivers, and so forth. And restrict the immediate flexibility to setting jumpers on the PCB, and the load and source that get attached to the screw terminals.
Maybe that is a build-able circuit. Maybe that's enough to boot up Eagle and see what it might look like...
It starts with the problem of a kerosene lantern. This is a prop that shows up on stage in various productions. Since we don't of course want to actually set fire to lamp oil, the usual trick is flashlight bulbs and batteries. For a brighter "flame," a 12v halogen (automotive use) and a battery pack of high enough voltage to run it (such as 8xAA batteries).
The more robust solution is LEDs. At the simplest, you could, indeed, use one of the automotive-use amber LED arrays and hook that up to your 8-pack of batteries. It would last longer with a higher average output and more consistent color temperature.
Or you get a little fancier. Use a 3W RGB LED, like the Cree I've been having fun with of late. With PWM control, you now have a portable light that you can set to a selected color and intensity. And you can even flicker it.
Now, sure, you could just hard-wire a Cree, plus PWM if wanted, onto a piece of perf. I have one around I was building for an effect that got scratched. But it is a neater circuit if you have the board printed.
And even neater than that if you have a reflow oven sitting around.
Doing it this way makes for a more compact and more reliable circuit. But the downside is that you aren't soldering something to fit just a lantern. Economies of scale become economical when there is, yes, scale. The development time of a circuit board pays off higher if the same board can be used for other things other than lanterns.
And this is the first problem I'm having. What are these "other things?"
The light-up coat I made for The Wiz is very much a unique application. I've done tens of shows with a lantern in them, but only two with light-up costumes. Really, I can't think of any other common theatrical situation that I would be reaching for a plug-and-play portable light source on.
Perhaps a flexible point source for general lighting; the kind of situations where you have a doorway or other inconvenient shadow and you just want a little face light. I'm willing to believe that a little firelight in such things as campfires and stoves would also be calling for a small portable RBG source if such were available. And I can't help thinking that there must be magic wands and crystal balls that could use a light.
Because there are two other givens with the PWM circuitry that gives us RGB control and potential flicker. The first being program-ability. The second being control-ability.
It goes without saying that the portable RGB source can be easily switched on and off. But you could also dim up and down, or change color on command.
And if you an empty socket, or the right kind of header, than it also becomes remote controllable. And you are no longer dependent on an actor getting over to the prop to turn it on and off.
Here's where creeping featuritis really comes into play, though.
Assume the "board" is an ATtiny-based PWM/program generator with a couple of controller inputs (perhaps capacitance sensing to save on external hardware). Assume it switches an arbitrary load through a trio of Power Darlingtons (or similar) and solder tabs or screw terminals. This detaches the LED/load itself so the circuit can be hidden in the base of a lamp or whatever. Constant-current drivers would be better for LEDs but would have to be matched; this allows us to re-purpose for relays or other tasks.
The board can easily power-regulate from a 3v to 12v source, so a 3-pack or 4-pack of rechargeable batteries is good enough. But a lipo is sexier; high density rechargeable battery built in, with charging circuit and charge indicators, so all you have to do is plug it into a USB charger (or similar) between shows.
(The main downside to the lipo is if you have back-to-back shows with heavy use of the circuit. Using swappable batteries means you can put the device back in service without having to wait on a charge.)
The bigger problem is program-ability. For me, I'm fine writing new code as needed and feeding it through an ISP port. But it might be easier for the general user -- heck, it would be easier for me too -- if you could adjust the behavior on the fly via nothing more than a USB cable. Better yet, through a USB cable -- or remotely through a radio link -- via a GUI that dealt with most of the details of selecting colors and setting up switches and so forth at a higher level of abstraction than typing fresh code.
I think at some point, you have to accept that one "board" shouldn't try to be too generalist. Perhaps it makes most sense to design it as if it will always be PWM'ing three channels of LED, with a preset of several hard-coded behaviors selected by resistor ladder and/or transmitted commands. And re-purpose that hardware with scratch-written code as unique applications arise.
And to ignore such fun ideas as lipo charging circuits, boost converters, constant-current drivers, and so forth. And restrict the immediate flexibility to setting jumpers on the PCB, and the load and source that get attached to the screw terminals.
Maybe that is a build-able circuit. Maybe that's enough to boot up Eagle and see what it might look like...
Feh Memberships
As I feared, my TechShop membership is doing me little good. There almost no classes scheduled during the holidays, and even before that they tended to be scheduled on evenings and weekends -- which is when I work.
So I could go over there any time. But I'm not allowed to touch any of the tools. (Well, except for the bandsaw...)
Several difficult Tech Weeks have also brought my gym attendance down to where it is about even-on between continuing my membership, or simply paying at the door. The main advantage to having the membership is I can do a short drop-in visit without feeling like I am wasting money.
Like today. Flashed a V3 on the mushroom and called it a day. It was on the dihedral, and even with serious hooking I had to claw for holds. Almost bailed twice; caught a hold on two fingers, lost the foot and barn doored on those fingers and was sure I was going to peel. Somehow got the other fingers in there, hauled up, took some high feet that felt very exposed (the whole wave and that side of the mushroom always feel a little high-ball anyhow), lunged for the top and was sure I wasn't going to be able to control the final hold, either.
Okay, I'd come straight from brunch, and I played for a while before that figuring out the solution to a new V4, plus flailed/flashed another V3, but still...was a short trip, and I'm glad I didn't pay at the desk for it.
Now if only anything was open over the holidays!
So I could go over there any time. But I'm not allowed to touch any of the tools. (Well, except for the bandsaw...)
Several difficult Tech Weeks have also brought my gym attendance down to where it is about even-on between continuing my membership, or simply paying at the door. The main advantage to having the membership is I can do a short drop-in visit without feeling like I am wasting money.
Like today. Flashed a V3 on the mushroom and called it a day. It was on the dihedral, and even with serious hooking I had to claw for holds. Almost bailed twice; caught a hold on two fingers, lost the foot and barn doored on those fingers and was sure I was going to peel. Somehow got the other fingers in there, hauled up, took some high feet that felt very exposed (the whole wave and that side of the mushroom always feel a little high-ball anyhow), lunged for the top and was sure I wasn't going to be able to control the final hold, either.
Okay, I'd come straight from brunch, and I played for a while before that figuring out the solution to a new V4, plus flailed/flashed another V3, but still...was a short trip, and I'm glad I didn't pay at the desk for it.
Now if only anything was open over the holidays!
Ding, Dong, the Witch is Dead
One of my favorite moments of a show is when the Big Bad gets dragged off stage.
Not, however, because of "justice being done." In fact, my sympathies are usually with the Miss Hannigans and the Miss Minchins. (Note in passing that horrid Disney tradition of casting an older woman, usually unmarried, as the chief villain.)
Why it is my favorite moment, is that it marks the point at which I start turning off microphones that will never have to be turned on again. Most shows build to a peak, drawing together all the various plotlines, which means every character with a mic will have an important speaking line in the climactic scene.
Because the trick to a good mix isn't remembering which mics to turn on. It is knowing which mics you can turn off.
The fewer open mics, the less noise, the more clarity, the more room before feedback, and the less chance for accidents. So it is a wonderful feeling to be able to pull down a fader and know that you can finish mixing that evening's show without ever needing that particular fader up again. The scenes following the climax are a series of "good byes" to your open channels of wireless mic, as one character after another is removed from having anything further to say (or sing).
This is also true of ensembles. In a typical ensemble of twelve singers, two are in a quick-change and won't be singing, four are out of breath and aren't singing well, and two sing badly all the time anyhow.
The trick to getting a good ensemble sound is not in opening up every microphone that might have some lyrics coming into it. The trick is, instead, to find those few microphones which have a strong melodic or harmonic line in them. And you let the wash of natural sound (plus mic leakage) make those six open mics sound like they are carrying an ensemble of twenty.
It is a delicate balancing act between getting a "full" sound and leaving out those voices that are panting, off pitch, touching their microphone, or whatever. And between getting a clean sound, and having open mics for all those random lines of dialog that will inevitably be given to a character who never speaks or sings at any other point in the entire show.
And you risk, of course, making the call to cut the mic of an actor who is fumbling with their hat a split second before they blurt out the single line that is next in the post-Sondheim song in progress. Or being distracted trying to find that one actress who is completely off pitch and blowing the entrance of one of the stars.
And you'll never be able to explain why you missed the line. Because you can sort of push through a grudging understanding that the more open mics, the more chance of feedback. But you can not make directors and producers understand the mindset that looks not to which mics you can have up, but instead which mics you can safely turn off.
Not, however, because of "justice being done." In fact, my sympathies are usually with the Miss Hannigans and the Miss Minchins. (Note in passing that horrid Disney tradition of casting an older woman, usually unmarried, as the chief villain.)
Why it is my favorite moment, is that it marks the point at which I start turning off microphones that will never have to be turned on again. Most shows build to a peak, drawing together all the various plotlines, which means every character with a mic will have an important speaking line in the climactic scene.
Because the trick to a good mix isn't remembering which mics to turn on. It is knowing which mics you can turn off.
The fewer open mics, the less noise, the more clarity, the more room before feedback, and the less chance for accidents. So it is a wonderful feeling to be able to pull down a fader and know that you can finish mixing that evening's show without ever needing that particular fader up again. The scenes following the climax are a series of "good byes" to your open channels of wireless mic, as one character after another is removed from having anything further to say (or sing).
This is also true of ensembles. In a typical ensemble of twelve singers, two are in a quick-change and won't be singing, four are out of breath and aren't singing well, and two sing badly all the time anyhow.
The trick to getting a good ensemble sound is not in opening up every microphone that might have some lyrics coming into it. The trick is, instead, to find those few microphones which have a strong melodic or harmonic line in them. And you let the wash of natural sound (plus mic leakage) make those six open mics sound like they are carrying an ensemble of twenty.
It is a delicate balancing act between getting a "full" sound and leaving out those voices that are panting, off pitch, touching their microphone, or whatever. And between getting a clean sound, and having open mics for all those random lines of dialog that will inevitably be given to a character who never speaks or sings at any other point in the entire show.
And you risk, of course, making the call to cut the mic of an actor who is fumbling with their hat a split second before they blurt out the single line that is next in the post-Sondheim song in progress. Or being distracted trying to find that one actress who is completely off pitch and blowing the entrance of one of the stars.
And you'll never be able to explain why you missed the line. Because you can sort of push through a grudging understanding that the more open mics, the more chance of feedback. But you can not make directors and producers understand the mindset that looks not to which mics you can have up, but instead which mics you can safely turn off.
Friday, November 22, 2013
Backline and IEMs
We're looking at IEMs. As an interim experiment, we've got the drummer on headphones now. He is very happy.
Part of the migration to IEMs (In-Ear Monitors) is providing each musician with their own volume control. In fact, with their own little mixer so they can adjust to taste without having to get word to the FOH mixer. (There is no monitor mixer in smaller houses).
What I've done for several previous shows is: run 2-4 channels of monitor back to the pit, and set up a micro-mixer on a rehearsal cube. That runs to powered monitor and/or headphones. The easiest instrument to add is that of a keyboard player; you just y-cord it right at the DI box.
In this case, the drummer is getting keyboards (over a y-cord), the same vocal bus as the conductor (contains every open wireless microphone), and for "more me," I set up a pair of overheads and hard-panned them left and right. I tried the rig myself, and I'm no drummer, but I really felt like I had ears in the space instead of being inside headphones. But vocals, and the conductor's keyboard, were still coming through nice and clear.
Close-mic wasn't working anyhow. There's too much variety in what he does, and it was leaving ride and tom out of the picture anyway (not enough input channels). So it is now a pair of condensers at about two feet overhead; one over the hat and one over the ride and both equidistant and pointing at the snare. It isn't quite the tight sound I want for the more "pop" parts of the musical, but it does a lot better at capturing the variety of things he gets into during the show.
When we get into IEMs, we are probably going to be able to send a pre-processing clone of every pit input back to the IEM master, and then using something like the new Behringer jobbies, make custom mixes for each musician at their station.
And one of the channels on that system will be ambient/talkback, so the musicians can hear each other and the conductor can say, "She's off again; quick, back to bar 44 and vamp on it" or, "No, no, concert Bb."
And maybe even I or the FOH de jour can be on this loop so during tech we can actually communicate.
The two goals are, of course, for the musicians to be able to hear what they need, and to reduce wherever possible the backline contamination. For most musicals I've done (in a multitude of smaller theaters) in the top three has been keyboard monitor leakage (vying for top spot, usually, with bass amp leakage and drums). And by the time you reach the five worse noise-makers in the pit, include the vocal monitor from stage to conductor; in many small shows, I've fed back on the conductor's monitor well before I've fed back on the mains!
The problem is, acoustic musicians on headphones are going to be no more conscious of how much sound they are pumping into the air. Putting headphones on the band may keep them from blasting the audience with their monitors, but they are still going to blast the audience with brass and drums. And it will still be a chore to try to get a balanced sound out to the audience.
At least it beats what happens with monitor speakers. What has happened there --more than once!-- is that the conductor turns the vocal feed all the way up until the pit monitors are feeding back, then starts whining he can't hear his own keyboard anymore, and runs out and buys a new and bigger keyboard amp and points it at his ankles turned up to 11... at which point you can't hear the rest of the band, or the singers, and I can't even bring up the vocals because they are feeding back via the pit.
At least with in-ears, the only people that will go deaf is the musicians. And the good models even have limiters to (partially) protect them from themselves.
Part of the migration to IEMs (In-Ear Monitors) is providing each musician with their own volume control. In fact, with their own little mixer so they can adjust to taste without having to get word to the FOH mixer. (There is no monitor mixer in smaller houses).
What I've done for several previous shows is: run 2-4 channels of monitor back to the pit, and set up a micro-mixer on a rehearsal cube. That runs to powered monitor and/or headphones. The easiest instrument to add is that of a keyboard player; you just y-cord it right at the DI box.
In this case, the drummer is getting keyboards (over a y-cord), the same vocal bus as the conductor (contains every open wireless microphone), and for "more me," I set up a pair of overheads and hard-panned them left and right. I tried the rig myself, and I'm no drummer, but I really felt like I had ears in the space instead of being inside headphones. But vocals, and the conductor's keyboard, were still coming through nice and clear.
Close-mic wasn't working anyhow. There's too much variety in what he does, and it was leaving ride and tom out of the picture anyway (not enough input channels). So it is now a pair of condensers at about two feet overhead; one over the hat and one over the ride and both equidistant and pointing at the snare. It isn't quite the tight sound I want for the more "pop" parts of the musical, but it does a lot better at capturing the variety of things he gets into during the show.
When we get into IEMs, we are probably going to be able to send a pre-processing clone of every pit input back to the IEM master, and then using something like the new Behringer jobbies, make custom mixes for each musician at their station.
And one of the channels on that system will be ambient/talkback, so the musicians can hear each other and the conductor can say, "She's off again; quick, back to bar 44 and vamp on it" or, "No, no, concert Bb."
And maybe even I or the FOH de jour can be on this loop so during tech we can actually communicate.
The two goals are, of course, for the musicians to be able to hear what they need, and to reduce wherever possible the backline contamination. For most musicals I've done (in a multitude of smaller theaters) in the top three has been keyboard monitor leakage (vying for top spot, usually, with bass amp leakage and drums). And by the time you reach the five worse noise-makers in the pit, include the vocal monitor from stage to conductor; in many small shows, I've fed back on the conductor's monitor well before I've fed back on the mains!
The problem is, acoustic musicians on headphones are going to be no more conscious of how much sound they are pumping into the air. Putting headphones on the band may keep them from blasting the audience with their monitors, but they are still going to blast the audience with brass and drums. And it will still be a chore to try to get a balanced sound out to the audience.
At least it beats what happens with monitor speakers. What has happened there --more than once!-- is that the conductor turns the vocal feed all the way up until the pit monitors are feeding back, then starts whining he can't hear his own keyboard anymore, and runs out and buys a new and bigger keyboard amp and points it at his ankles turned up to 11... at which point you can't hear the rest of the band, or the singers, and I can't even bring up the vocals because they are feeding back via the pit.
At least with in-ears, the only people that will go deaf is the musicians. And the good models even have limiters to (partially) protect them from themselves.
"Simplicity," riiiiight.
Finished my first pair of pants. I took them in by eye and that shifted the waist; it feels comfortable and the line is good, but it doesn't lie straight on the hanger. Same comment for the legs; they don't quite press flat -- more so than I am used to for even jeans with a generous ease in them. I also left off a bunch of the decorative stitching (want to wait on stuff like that until my new presser foot and guide shows up, anyhow). But since they are black, can probably get away with wearing them to work.
Picked up three yards of a very nice looking heathered cotton-poly at just five bucks a yard for my next endeavor. It is a speckled grey that should be dark enough for work. I think I might need to look at a McCall's pattern next, though. I don't like either of the Simplicity trousers I have.
Also cleaned and oiled the Bernina today, and it is purring. Berninas are described by many as a noisier machine, but it like it. It sounds like Industry.
Isn't it the way, though? We humans are hard-wired to want to learn things. If we can't learn where the water hole is or a better way to hunt, we learn the names of all the actors who have played The Doctor, in chronological order (your discretion on whether to include Roland Atkinson and/or Peter Cushing!)
Trouble is, although "life" is not necessarily more complex today as compared to any previous century, there are a great many more specialities you can indulge in. And fields keep evolving. I know how to build mods for games that no-one plays anymore, and I have hard-won skills in software that I'll never run again. And skills with hardware and work-arounds that are mostly replaced by easier solutions.
In theater alone, I know how to construct an old-style canvass flat with glue and tack hammer, how to run an old carbon-arc follow-spot, and even how to lash flats and use stage braces. Do I really expect to need those skills again?
And, yeah, is is kinda fun to walk down the tool aisles of the local OSH going, "I know what that is, and that, and that, used to own one of those, still own one of those..."
Oh yeah. In true good-money-after-bad tradition, once you've learned a skill, you feel driven to keep it up. Heck, you feel this way even if it turns out you never were any good at it in the first place. You feel this compulsion anyhow to develop a completely useless and extraneous skill, because it is part of your self-image that you had that skill in the first place.
Which is why this week I've been trying to schedule classes in machining skills I've never had, reading up to improve and extend mixing skills I have, and running a ton of fabric through the Bernina developing sewing skills I thought I had (and turn out to, largely, not have had.) And bemoaning the lack of time to program, play ukelele, draw, write, and do any of the other hundreds of random skills I've picked up over the years.
Picked up three yards of a very nice looking heathered cotton-poly at just five bucks a yard for my next endeavor. It is a speckled grey that should be dark enough for work. I think I might need to look at a McCall's pattern next, though. I don't like either of the Simplicity trousers I have.
Also cleaned and oiled the Bernina today, and it is purring. Berninas are described by many as a noisier machine, but it like it. It sounds like Industry.
Isn't it the way, though? We humans are hard-wired to want to learn things. If we can't learn where the water hole is or a better way to hunt, we learn the names of all the actors who have played The Doctor, in chronological order (your discretion on whether to include Roland Atkinson and/or Peter Cushing!)
Trouble is, although "life" is not necessarily more complex today as compared to any previous century, there are a great many more specialities you can indulge in. And fields keep evolving. I know how to build mods for games that no-one plays anymore, and I have hard-won skills in software that I'll never run again. And skills with hardware and work-arounds that are mostly replaced by easier solutions.
In theater alone, I know how to construct an old-style canvass flat with glue and tack hammer, how to run an old carbon-arc follow-spot, and even how to lash flats and use stage braces. Do I really expect to need those skills again?
And, yeah, is is kinda fun to walk down the tool aisles of the local OSH going, "I know what that is, and that, and that, used to own one of those, still own one of those..."
Oh yeah. In true good-money-after-bad tradition, once you've learned a skill, you feel driven to keep it up. Heck, you feel this way even if it turns out you never were any good at it in the first place. You feel this compulsion anyhow to develop a completely useless and extraneous skill, because it is part of your self-image that you had that skill in the first place.
Which is why this week I've been trying to schedule classes in machining skills I've never had, reading up to improve and extend mixing skills I have, and running a ton of fabric through the Bernina developing sewing skills I thought I had (and turn out to, largely, not have had.) And bemoaning the lack of time to program, play ukelele, draw, write, and do any of the other hundreds of random skills I've picked up over the years.
Sunday, November 17, 2013
Taping Up Body Mics
Or, "Warts and Angler-Fish."
A lot of people have been asking, so I dedicate this post to it. Would do better with pictures, I know.
Cheek Mic (what some of my younger cast call the "you've got a parasitic infection" look.) If there is nothing unusual, like glasses, bushy sideburns, a hat, a mask to get around, this is where and how it goes;
Feel for the cheekbone -- the zygomatic. It starts at the hairline at roughly the lower margin of the eyes, and for the first centimeter or two makes a line that points towards the philtrum (the space between upper lip and nose). Jaw muscles originate just below this bony prominence; press a finger against your own cheek and make a chewing motion and you will feel how on the cheek, you have movement, but on top of the cheekbone, the flesh remains almost still.
Starting with the microphone under the shirt or blouse and coming up through the neck hole in back, pull the mic over the top of the ear and stretch it along the zygomatic -- just on top or slightly below in the notch. It should be along the same line as the bone, making a fairly straight line as it points to the margin of the upper lip. Avoid the temptation to angle it lower.
Pull the mic out until there is barely one width of tape between the head of the mic and the start of the hairline (aka the sideburns). Tape there. For younger cast I buy 1/2" tape or tear the 1" in half. For women and children, you can usually brush aside much of the stray hair in front of the ear to make sure you are not putting tape on top of hair.
So that's four things to watch out for; don't pull the mic out too far, don't tip the mic down or otherwise allow it to get on the soft part of the cheek, don't get tape on the head of the mic, and don't tape on top of hair (it is uncomfortable for the actor and doesn't stay on, anyhow).
On most actors, dress the mic behind the ear and tape once behind the ear; when the space is large and clear, actually behind the ear a bit above the lobe -- I've found a narrow strip of tape done at an angle works well -- and when the space is small or there is a lot of hair, just below the ear on the broad mass of the sternomastoid itself.
For actresses with lush hair (particularly girls) you can save them tape behind the ear and use a bobby pin or hair clip right where the hair tucks over the back of the ear.
The last piece of tape in the typical three-piece arrangement is on the back of the neck. I used to recommend low, around the 7th cervical vertebrae, but I've changed that now to a 3/4 position, along the mass of the trapezius and just above the "V" where shoulder line meets neck line.
Okay, I've given a bunch of exceptions here already, but really, for twenty actors you can go through 18 of them with the basic three pieces of tape, slap slap slap. I've done a cast of twenty myself in under fifteen minutes.
Hair Mic. What one of my younger cast called the "angler fish" look. Also when done wrong can look like a caste mark. Seriously, there's not enough sonic difference between just down of the hairline, and inside the hairline, to make it worth staring at a microphone all night.
The mic goes on the forehead. If the actor has hair with an off-center part, this may give you a better place to lead it, otherwise just go center. Tape just behind the head of the mic, and as close to hairline as you can get...if you have to tape. For most actors, it is better to pull the mic up until it is just barely peeking out, and secure it with bobby pins or hair clips.
Work the mic up along the top of the head and back, pinning as you go. The slowest to dress are actors in natural hair. With wigs, you either have a wig cap, or the actor's own hair in coils, and it is easy to pin to or weave the mic inside.
Particularly, girls with wigs or "trousers" roles will have the bulk of their hair pinned up in a bun or french roll. You can pull the mic through that and let it dangle in back. Then all you need to do is pin the length up to where it meets the hairline in front.
When the hair is not supportive of the fragile neck area, this will be a piece of tape.
Hair mics take longer, and take more experience and judgment in figuring out how best to deal with each individual actor. The trade-off is that they, of course, sound better.
Lapel Mic. Completely inappropriate for most live theater, but you may have to do it for a presenter or work a lecture or talk some time.
No tape. The mic goes into a clip, which clips to clothing. The trick is to get out of chin shadow; don't go on to a high collar. As a rule of thumb, feel for the top of the dagger-bone -- below the clavicular notch. Or the other rule of thumb...imagine the microphone is a little light, and it should touch the lips without the chin casting a shadow on them. In most cases it looks nicer on clothing to be to one side or the other, on the inside edge of the lapel on a sports coat or similar.
In the case of, say, a turtleneck sweater, make a judgment call about whether you'd prefer to be watching a puckered sweater with a mic attached in the middle of the fabric (the thicker, looser weave, and more colorful the sweater, the better this works), or listen to a poor voice from a position that is up too high.
A lot of people have been asking, so I dedicate this post to it. Would do better with pictures, I know.
Cheek Mic (what some of my younger cast call the "you've got a parasitic infection" look.) If there is nothing unusual, like glasses, bushy sideburns, a hat, a mask to get around, this is where and how it goes;
Feel for the cheekbone -- the zygomatic. It starts at the hairline at roughly the lower margin of the eyes, and for the first centimeter or two makes a line that points towards the philtrum (the space between upper lip and nose). Jaw muscles originate just below this bony prominence; press a finger against your own cheek and make a chewing motion and you will feel how on the cheek, you have movement, but on top of the cheekbone, the flesh remains almost still.
Starting with the microphone under the shirt or blouse and coming up through the neck hole in back, pull the mic over the top of the ear and stretch it along the zygomatic -- just on top or slightly below in the notch. It should be along the same line as the bone, making a fairly straight line as it points to the margin of the upper lip. Avoid the temptation to angle it lower.
Pull the mic out until there is barely one width of tape between the head of the mic and the start of the hairline (aka the sideburns). Tape there. For younger cast I buy 1/2" tape or tear the 1" in half. For women and children, you can usually brush aside much of the stray hair in front of the ear to make sure you are not putting tape on top of hair.
So that's four things to watch out for; don't pull the mic out too far, don't tip the mic down or otherwise allow it to get on the soft part of the cheek, don't get tape on the head of the mic, and don't tape on top of hair (it is uncomfortable for the actor and doesn't stay on, anyhow).
On most actors, dress the mic behind the ear and tape once behind the ear; when the space is large and clear, actually behind the ear a bit above the lobe -- I've found a narrow strip of tape done at an angle works well -- and when the space is small or there is a lot of hair, just below the ear on the broad mass of the sternomastoid itself.
For actresses with lush hair (particularly girls) you can save them tape behind the ear and use a bobby pin or hair clip right where the hair tucks over the back of the ear.
The last piece of tape in the typical three-piece arrangement is on the back of the neck. I used to recommend low, around the 7th cervical vertebrae, but I've changed that now to a 3/4 position, along the mass of the trapezius and just above the "V" where shoulder line meets neck line.
Okay, I've given a bunch of exceptions here already, but really, for twenty actors you can go through 18 of them with the basic three pieces of tape, slap slap slap. I've done a cast of twenty myself in under fifteen minutes.
Hair Mic. What one of my younger cast called the "angler fish" look. Also when done wrong can look like a caste mark. Seriously, there's not enough sonic difference between just down of the hairline, and inside the hairline, to make it worth staring at a microphone all night.
The mic goes on the forehead. If the actor has hair with an off-center part, this may give you a better place to lead it, otherwise just go center. Tape just behind the head of the mic, and as close to hairline as you can get...if you have to tape. For most actors, it is better to pull the mic up until it is just barely peeking out, and secure it with bobby pins or hair clips.
Work the mic up along the top of the head and back, pinning as you go. The slowest to dress are actors in natural hair. With wigs, you either have a wig cap, or the actor's own hair in coils, and it is easy to pin to or weave the mic inside.
Particularly, girls with wigs or "trousers" roles will have the bulk of their hair pinned up in a bun or french roll. You can pull the mic through that and let it dangle in back. Then all you need to do is pin the length up to where it meets the hairline in front.
When the hair is not supportive of the fragile neck area, this will be a piece of tape.
Hair mics take longer, and take more experience and judgment in figuring out how best to deal with each individual actor. The trade-off is that they, of course, sound better.
Lapel Mic. Completely inappropriate for most live theater, but you may have to do it for a presenter or work a lecture or talk some time.
No tape. The mic goes into a clip, which clips to clothing. The trick is to get out of chin shadow; don't go on to a high collar. As a rule of thumb, feel for the top of the dagger-bone -- below the clavicular notch. Or the other rule of thumb...imagine the microphone is a little light, and it should touch the lips without the chin casting a shadow on them. In most cases it looks nicer on clothing to be to one side or the other, on the inside edge of the lapel on a sports coat or similar.
In the case of, say, a turtleneck sweater, make a judgment call about whether you'd prefer to be watching a puckered sweater with a mic attached in the middle of the fabric (the thicker, looser weave, and more colorful the sweater, the better this works), or listen to a poor voice from a position that is up too high.
Subscribe to:
Comments (Atom)